Il faut choisir et réaliser seulement trois des quatre exercices proposés.

EXERCICE 1

Le plan \mathscr{P} est rapporté à un repère orthonormé $(0, \overrightarrow{i}, \overrightarrow{j})$.

Partie A

On considère la fonction f définie sur $[0; +\infty[$ par : $f(x) = \ln(x+1) - \frac{x}{x+1}$. On note \mathscr{C}_f la courbe représentative de f dans le plan \mathscr{P} .

- 1. Déterminer $\lim_{x \to +\infty} f(x)$. Justifier la réponse.
- **2.** f' désigne la dérivée de f.

Pour tout x > 0, f'(x) s'écrit sous la forme : $f'(x) = \frac{h(x)}{(x+1)^2}$.

Déterminer l'expression de h(x). Détailler le calcul.

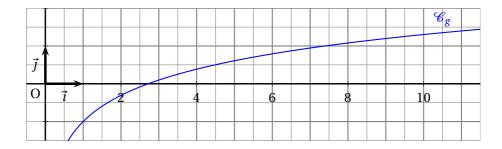
- **3.** Dresser le tableau des variations de f.
- **4.** Soient B, C et D les points de \mathcal{C}_f d'abscisses respectives 0, 5 et 10.

On note y_B , y_C et y_D leurs ordonnées.

Donner la valeur de y_B et une valeur décimale approchée à 10^{-1} près de y_C et y_D .

Partie B

On considère la fonction g définie sur $]0; +\infty[$ par : $g(x) = -1 + \ln x$. On note \mathcal{C}_g la courbe représentative de g dans le plan \mathcal{P} .



- 1. Montrer que, pour tout réel x > 0, $f(x) g(x) = \ln\left(1 + \frac{a}{x}\right) + \frac{b}{x+1}$, où a et b sont des réels à déterminer.
- **2. a.** Pour x > 0, quel est le signe de f(x) g(x)? Justifier la réponse.
 - **b.** En déduire la position relative des courbes \mathscr{C}_f et \mathscr{C}_g .
- **3.** Soit x > 0. On considère les points M(x; f(x)) et N(x; g(x)).
 - **a.** Exprimer la longueur MN en fonction de x.
 - **b.** Donner la limite de MN lorsque x tend vers $+\infty$.
- **4.** Sur la figure est tracée la courbe \mathcal{C}_g . Placer les points B, C et D.

Tracer la tangente à la courbe \mathscr{C}_f au point B.

Puis tracer la courbe \mathcal{C}_f en utilisant les résultats des questions B. 2. b. et B. 3. b.

Partie C

On considère la fonction H définie sur $]0; +\infty[$ par : $H(x) = (x+2)\ln(x+1) - x\ln x.(0)$

1. Montrer que *H* est une primitive de f - g sur]0; $+\infty[$.

- **2.** Soit \mathcal{D} le domaine du plan situé entre les courbes \mathcal{C}_f et \mathcal{C}_g et les droites d'équation x = 1 et x = 3. On note \mathcal{A} son aire, exprimée en unités d'aires.
 - **a.** Hachurer \mathcal{D} sur la figure de la question B. 4.
 - **b.** Calculer \mathcal{A} .

Le résultat sera écrit sous la forme $\mathcal{A} = \alpha \ln 2 + \beta \ln 3$ où α et β sont des entiers relatifs à déterminer.

EXERCICE 2

Donner les réponses à cet exercice dans le cadre prévu.

Dans cet exercice, pour chaque probabilité demandée, on donnera sa valeur exacte sous la forme d'une fraction irréductible.

Partie A

1. Donner l'ensemble F_1 des solutions de l'équation (E_1) d'inconnue réelle x:

$$(E_1)$$
 $4x^2 - 4x + 1 = 0.$

2. En déduire l'ensemble F_2 des solutions de l'équation (E_2) d'inconnue réelle λ :

$$(E_2)$$
 $4e^{-2\lambda} - 4e^{-\lambda} + 1 = 0.$

Justifier la réponse.

Partie B

À une sortie d'autoroute, il y a une seule barrière de péage et une étude a montré que le temps d'attente d'un véhicule arrivant à la barrière avant le franchissement du péage, exprimé en minutes, peut être représenté par une variable aléatoire T suivant une loi exponentielle de paramètre λ , avec $\lambda \in \mathbb{R}$.

L'étude a montré par ailleurs que la probabilité que le temps d'attente d'un véhicule soit compris entre une et deux minutes est égale à $\frac{1}{4}$.

- 1. On rappelle que, pour tout $t \ge 0$, la probabilité $P(T \le t)$ que l'attente d'un véhicule dure moins de t minutes est donnée par : $P(T \le t) = 1 e^{-\lambda t}$.
 - **a.** Ecrire $P(1 \le T \le 2)$ en fonction de λ .
 - **b.** En utilisant la question A. 2., montrer que $\lambda = \ln 2$.

On a donc : pour tout $t \ge 0$, $P(T \le t) = 1 - e^{-(\ln 2)t}$. [resume] Un véhicule arrive au péage.

- 1. a. Déterminer la probabilité P_1 qu'il attende au plus une minute. Détailler le calcul.
 - **b.** Déterminer la probabilité P_2 qu'il attende au moins deux minutes. Détailler le calcul.
 - **c.** Déterminer la probabilité P_3 qu'il attende au moins trois minutes, sachant qu'il a attendu au moins deux minutes. Justifier soigneusement la réponse.

Partie C

Le trafic augmentant, la société d'autoroute a installé une deuxième barrière de péage.

Le passage d'un véhicule au péage sera dit « rapide » lorsque son temps d'attente est inférieur ou égal à une minute et « lent » dans le cas contraire.

La probabilité que le véhicule choisisse la première barrière est égale à $\frac{2}{3}$ et, dans ce cas, la probabilité que son passage soit rapide est égale à $\frac{1}{2}$.

Lorsque le véhicule choisit la deuxième barrière, plus moderne, la probabilité que son passage soit rapide est égale à $\frac{3}{5}$.

Un véhicule arrive au péage. On considère les évènements :

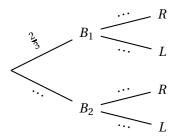
 B_1 : « le véhicule choisit la première barrière »

R : « le passage au péage est rapide »

B₂ : « le véhicule choisit la deuxième barrière »

L: « le passage au péage est lent »

1. Compléter l'arbre ci-contre avec les probabilités correspondantes.



- **2.** Déterminer la probabilité P_4 que le passage du véhicule au péage soit rapide. Détailler le calcul.
- **3.** Déterminer la probabilité P_5 que le véhicule ait choisi la deuxième barrière, sachant que son passage a été lent. Justifier soigneusement le résultat.

EXERCICE 3

Donner les réponses à cet exercice dans le cadre prévu.

Dans cet exercice, n désigne un entier naturel non nul.

Partie A

- 1. On considère la suite géométrique $(v_n)_{n\geqslant 1}$ de raison $q=\frac{3}{4}$ et de premier terme $v_1=1$.
 - **a.** Donner les valeurs exactes de v_2 et v_3 .
 - **b.** Donner, pour tout $n \ge 1$, l'expression de v_n en fonction de n.
- **2.** On pose, pour tout $n \ge 1$, $A_n = \sum_{k=1}^n v_k = v_1 + ... + v_n$.
 - **a.** Donner les valeurs exactes de A_1 , A_2 et A_3 .
 - **b.** Montrer que, pour tout $n \ge 1$, $A_n = 4 \left[1 \left(\frac{3}{4} \right)^n \right]$.
 - **c.** La suite $(A_n)_{n\geqslant 1}$ est convergente. Déterminer $\lim_{n\to +\infty} A_n$. Justifier la réponse.
 - **d.** Déterminer le plus petit entier n tel que $A_n \geqslant 3$. On le notera n_0 . Justifier soigneusement la réponse.

Partie B

On effectue le coloriage d'un carré de côté 2 unités de longueur avec les consignes suivantes :

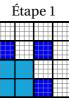
Étape 1 : partager le carré initial en quatre carrés identiques de côté de longueur c_1 et colorier le carré situé en bas à gauche comme indiqué sur la figure ci-contre.

Étape 2: pour chacun des carrés non encore coloriés, faire un partage en quatre carrés identiques de côté de longueur c_2 et colorier le carré situé en bas à gauche comme indiqué sur la figure ci-contre.

On pour suit le coloriage du carré selon le même procédé à chaque étape. Autrement dit, pour tout $n \geqslant 1$:

Étape n: pour chacun des k_n carrés non encore coloriés, faire un partage en quatre carrés identiques de côté de longueur c_n et colorier le carré situé en bas à gauche. On colorie k_n carrés à l'étape n.

On remarque que $k_1 = 1$, $k_2 = 3$.



Étape 2

- 1. Faire le coloriage de l?étape 3.
- **a.** Donner la valeur de k_3 .
 - **b.** Donner, pour tout $n \ge 1$, l'expression de k_{n+1} en fonction de k_n .
 - **c.** En déduire, pour tout $n \ge 1$, l'expression de k_n en fonction de n.
- **a.** Donner les valeurs de c_1 , c_2 et c_3 . 3.
 - **b.** Justifier que, pour tout $n \ge 1$, $c_n = \frac{1}{2^{n-1}}$.
- 4. Justifier que l'aire, en unités d'aire (u. a.), de la surface qui est coloriée lors de l'étape n est égale au terme v_n de la suite définie dans la question A. 1.
- **a.** Que vaut l'aire, en u.a., de la surface totale coloriée à l'issue de l'étape *n*?
 - b. Déterminer le nombre d'étapes minimal nécessaire pour colorier au moins les trois quarts du carré initial. Justifier la réponse.

EXERCICE 4

Donner les réponses à cet exercice dans le cadre prévu.

Dans l'espace muni d'un repère orthonormé $(0, \vec{i}, \vec{j}, \vec{k})$, on considère :

• les points A, B, C, D et E de coordonnées respectives :

$$A(0; 4; -1),$$

$$B(-2;4;-5),$$

$$C(1;1;-5),$$

$$D(1;0;-4),$$

$$D(1;0;-4), E(-1;2;-3);$$

• la droite ${\mathcal D}$ définie par le système d'équations paramétriques :

$$\begin{cases} x = -3 + k \\ y = k \text{, avec } k \in \mathbb{R}; \\ z = -5 + k \end{cases}$$

- le plan \mathcal{P}_1 d'équation cartésienne : x + 2z + 7 = 0.
- **a.** Donner les coordonnées d'un vecteur normal $\overrightarrow{n_1}$ au plan \mathscr{P}_1 .
 - **b.** Soit I le milieu du segment [AB]. Montrer que I appartient au plan \mathcal{P}_1 .
 - **c.** Montrer que la droite (AB) est orthogonale au plan \mathcal{P}_1 .
- **2.** Soit \mathcal{P}_2 le plan d'équation cartésienne : x y + d = 0, où d désigne un réel.
 - **a.** Donner les coordonnées d'un vecteur normal $\overrightarrow{n_2}$ au plan \mathscr{P}_2 .
 - **b.** Soit J le point de coordonnées $\left(-\frac{1}{2}; \frac{5}{2}; -5\right)$.

Déterminer d pour que J appartienne au plan \mathcal{P}_2 . Justifier la réponse.

- 3. a. Donner les coordonnées du vecteur CD.
 - **b.** Calculer les coordonnées du milieu K du segment [CD].
 - **c.** Soit \mathcal{P}_3 le plan passant par K et orthogonal à la droite (CD). Déterminer une équation cartésienne du plan \mathcal{P}_3 . Justifier la réponse.
- **4.** Le but de cette question est de prouver que les plans \mathscr{P}_1 , \mathscr{P}_2 et \mathscr{P}_3 ont comme seul point commun, le point E.
 - **a.** Justifier que les plans \mathscr{P}_2 et \mathscr{P}_3 sont sécants et que leur droite d'intersection est la droite \mathscr{D} .
 - **b.** Montrer que la droite \mathcal{D} coupe le plan \mathcal{P}_1 au point E.
- **5.** Donner les coordonnées des vecteurs \overrightarrow{EA} , \overrightarrow{EB} , \overrightarrow{EC} et \overrightarrow{ED} .
- 6. Donner les distances EA, EB, EC et ED. Détailler le calcul pour ED.
- 7. En déduire que A, B, C et D appartiennent à une sphère $\mathcal S$ dont on précisera le centre et le rayon R. Justifier la réponse.
- **8.** Donner une équation cartésienne de la sphère \mathcal{S} .