Révisions controle commun 2nde (1)

Correction 1

- 1. (a.) La droite x = -3 intercepte la courbe au point de coordonnées (-3;1,5): l'image de -3 par la fonction f est 1,5.
 - b. La droite d'équation $x = -\frac{1}{2}$ intercepte la courbe $\mathscr C$ au point d'abscisse $\left(-\frac{1}{2};0\right)$: l'image de $-\frac{1}{2}$ par la function f est 0.
 - c. La droite d'équation $x = \frac{1}{2}$ intercepte la courbe $\mathscr C$ au point d'abscisse $\left(\frac{1}{2};2\right)$: l'image de $\frac{1}{2}$ par la fonction
 - (d.) La droite d'équation x=0 intercepte la courbe \mathscr{C} au point d'abscisse (0;1): l'image de 0 par la fonction fest 1.
- (a.) La droite d'équation y=3 intercepte la courbe \mathscr{C} au point d'intersection (1;3): le nombre 3 admet pour unique antécédent le nombre 1.
 - (b.) L'ensemble des antécédents du nombre -1 est : $\{-2;-1\}$
 - (c.) La droite d'équation y = -2 n'intercepte pas la courbe \mathscr{C} : le nombre -2 n'admet d'antécédents.

Correction 2

- 1. (a.) La droite d'équation x=0.5 intercepte la courbe \mathcal{C}_f au point de coordonnées (0,5;2). Ainsi, l'image du nombre 0.5 par la fonction f a pour valeur 2.
 - (b.) La droite d'équation y=-1 intercepte la courbe aux points de coordonnées:

(-3;-1) ; (2,5;-1) ; (3,5;-1)

Ainsi, l'ensemble des antécédents du nombre -1 par la fonction f est:

 $\{-3; 2,5; 3,5\}$

(a.) L'image du nombre -1 par la fonction f a pour valeur 3,5.

> Car le point de coordonnées (-1;3,5) appartient à la courbe \mathscr{C}_f .

(b.) L'ensemble des antécédents de 2 par la fonction f est : $\{-2; 0,5\}$

Car les points de coordonnées (-2; 2) et (0,5; 2) sont les seuls points de la courbe \mathscr{C}_f à avoir 2 pour ordon-

- (a.) Le nombre 5 n'a pas d'image par la fonction f car l'ensemble de définition de la fonction f est]-4;4].
 - (b.) Le nombre 4 n'admet pas d'antécédent par la fonction f car la droite d'équation y=4 n'intercepte pas la courbe \mathcal{C}_f .

Correction 3

x	1,5	1	$-\frac{1}{3}$	$-\sqrt{2}$
f(x)	2,5	1	-3	$-3\sqrt{2}-2$
g(x)	2,25	1	$\frac{1}{9}$	2
h(x)	$\frac{4}{7}$	1	-1	$\frac{2}{3\sqrt{2}-1}$

Correction 4

• L'image du nombre 2 par la fonction f a pour valeur : $f(2) = \frac{3 \times 2}{2 \times 2 - 3} = \frac{6}{4 - 3} = \frac{6}{1} = 6$

Ainsi, le point A de coordonnées (2;2) n'appartient à la courbe représentative de la fonction f.

• L'imge du nombre 0,5 par la fonction f a pour valeur : $f(0,5) = \frac{3\times0,5}{2\times0,5-3} = \frac{1,5}{1-3} = \frac{1,5}{-2} = -\frac{3}{4}$

Ainsi, le point B de coordonnées $\left(0,5;-\frac{3}{4}\right)$ appartient à la courbe représentative de la fonction f.

Correction 5

Les courbes \mathscr{C}_f et \mathscr{C}_g s'interceptent en trois points dont les coordonnées sont:

(-4;0) ; (-3;a) ; (1;b)

où on a les valeurs approchées: $a \approx 0.8$ et $b \approx 3.8$

Les solutions de l'équation f(x) = g(x) sont les abscisses des points d'intersection des courbes \mathscr{C}_f et \mathscr{C}_q .

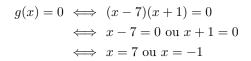
Graphiquement, on obtient que l'ensemble des solutions est: $S = \{-4; -3; 1\}$

Correction 6

Partie A

- 1. f(3) = 8
- 2. f(0) = -7
- 3. $y_C = 8$
- 4. Les antécédents de 5 sont 2 et 6.
- 5. f(x) = 0 pour $x \in \{1; 7\}$.
- 6. $f(x) \ge -2$ pour $x \in [0,7; 7,3]$.
- 7. Le maximum de f est 9.
- 8. Il est atteint en x = 4.

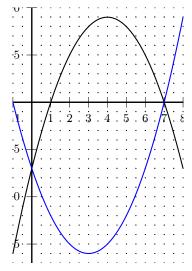
- 1. $g(x) = (x-3)^2 16 = x^2 6x + 9 16 = x^2 x 7$
- 2. $(x-7)(x+1) = x^2 + x 7x 7 = x^2 6x 7 = q(x)$
- 3. a. $g(\sqrt{2}) = (\sqrt{2} 3)^2 16 = 2 6\sqrt{2} + 9 16 =$
 - (b.) $g\left(\frac{9}{2}\right) = \left(\frac{9}{2} 3\right)^2 16 = \left(\frac{9}{2} \frac{6}{2}\right)^2 16 = \left(\frac{3}{2}\right)^2 16$ $16 = \frac{9}{4} - \frac{64}{4} = -\frac{55}{4}$



0 a deux antécédents: 7 et -1.

4.

x	-1	0	1	2	3	4	5	6	7	8
g(x)	0	-7	-12	-15	-16	-15	-12	-7	0	9

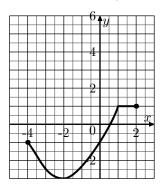


- 6. (a.) f(x) = g(x) pour $x \in \{0; 7\}$.
 - b. f(x) > g(x) pour $x \in]0; 7[$.

Correction 7

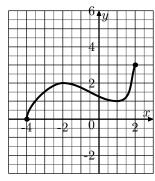
Voici les différentes associations des courbes représentatives et de leurs tableaux de variation:

• Pour la fonction f:



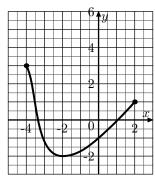
x	-4	-2	1	2
Variation de f	-1	-3	✓ ¹	→ 1

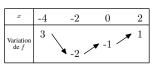
Pour la fonction g:



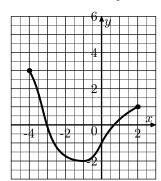
x	-4	-2	1	2
Variation de f	0 /	≯ ² \	1 /	∮ 3

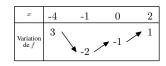
Pour la fonction h:





Pour la fonction j:



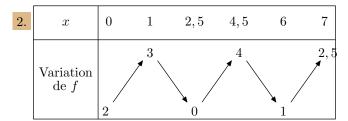


Correction 8

- a. f(-5) > f(3)
- b. f(6) < f(-4)
- c. f(-6) > f(4)
- d. $f(-4,75) \in [-2;2]$ et $f(7) \in [-3;0]$. On ne peut conclure.
- e. f est croissante sur $\left[-\frac{9}{2}; -1\right]$: f(-3) < f(-2)
- f. f est décroissante sur [0; 3]: f(1) > f(2)
- g. $f(-10) \in [-2; 5[$ et $f(-3) \in [2; 6]$. On ne peut conclure.
- h. f(7) < f(-2).

Correction 9

1. La fonction f a pour ensemble de définition l'intervalle [0;7]



- 3. Sur $\left[0; \frac{5}{2}\right]$, la fonction f atteint son maximum 3 pour
- 4. La valeur maximale prise par la fonction f sur son ensemble de définition est 4; cette valeur sera atteinte pour
- 5. Le minimum de la fonction f est 0 et est atteinte pour x = 2.5

Correction 10

1. La forme factorisée de l'expression $-4x^2+4x+3$ est: $(2x+1)(3-2x) = 6x - 4x^2 + 3 - 2x$ $= -4x^2 + 4x + 3$

2. Vérifions que les valeurs sont a=3 et b=-5: $(2x+1)(3x-5) = 6x^2 - 10x + 3x - 5$ $=6x^2-7x-5$

Correction 11

- 1. Voici deux contraintes sorties de la figure:
 - \bullet Pour que la longueur HS soit définie, il faut que la valeur de x soit strictement plus grande que 1;
 - \bullet Pour que la longueur GL soit définie, il faut que la valeur de x soit strictement plus grande que 3.

On en déduit que le nombre réel x doit appartenir à l'intervalle 3; $+\infty$ [.

- Le polygone ABCSD est composé:
 - \Rightarrow Du carré ABCD d'aire x^2 .
 - \Rightarrow Du triangle DCS d'aire $\frac{x(x-1)}{2}$

Son aire a pour valeur: $A = x^2 + \frac{1}{2} \cdot x \cdot (x-1)$

- Le polygone EFLKJI:
- \Rightarrow Le rectangle EFGI a pour aire $6 \cdot x$.
- ightharpoonup Le rectangle KLGJ a pour aire $2 \cdot (x-3)$. Son aire a pour valeur: $A' = 6 \cdot x - 2 \cdot (x - 3)$
- (a.) On a le développement: $\left(\frac{3}{2}x - 6\right)(x + 1) = \frac{3}{2}x^2 + \frac{3}{2}x - 6x - 6$ $=\frac{3}{2}\cdot x^2+\frac{3}{2}\cdot x-\frac{12}{2}\cdot x-6=\frac{3}{2}\cdot x^2-\frac{9}{2}\cdot x-6$ On vient d'établir la factorisation.
 - (b.) L'égalité des aires entraine la relation :

$$\mathcal{A} = \mathcal{A}'$$

$$x^2 + \frac{1}{2} \cdot x \cdot (x - 1) = 6 \cdot x - 2 \cdot (x - 3)$$

$$x^2 + \frac{1}{2} \cdot x^2 - \frac{1}{2} \cdot x = 6 \cdot x - 2 \cdot x + 6$$

$$\frac{3}{2} \cdot x^2 - \frac{1}{2} \cdot x = 4 \cdot x + 6$$

$$\frac{3}{2} \cdot x^2 - \frac{1}{2} \cdot x - 4 \cdot x - 6 = 0$$

$$\frac{3}{2} \cdot x^2 - \frac{1}{2} \cdot x - \frac{8}{2} \cdot x - 6 = 0$$

$$\frac{3}{2} \cdot x^2 - \frac{9}{2} \cdot x - 6 = 0$$

D'après la factorisation de la question (b.):

$$\left(\frac{3}{2} \cdot x - 6\right) \left(x + 1\right) = 0$$

Un produit est nul si, et seulement si, au moins un de ses facteurs est nul:

$$\frac{3}{2} \cdot x - 6 = 0$$

$$\frac{3}{2} \cdot x = 6$$

$$x = \frac{6}{\frac{3}{2}}$$

$$x = 6 \times \frac{2}{3}$$

$$x = 4$$

$$x = 0$$

$$x = -1$$

Puisque la valeur de x est un nombre réel strictement plus grande que 3, on en déduit que seule la valeur 4 permet à ces deux surfaces d'avoir la même aire.

Correction 12

1.
$$(x+2)(3-x) + 2(x-3)(2x-5) = 0$$

$$(x+2)[-(x-3)] + 2(x-3)(2x-5) = 0$$

$$- (x+2)(x-3) + 2(x-3)(2x-5) = 0$$

$$(x-3)[-(x+2) + 2(2x-5)] = 0$$

$$(x-3)(-x-2+4x-10) = 0$$

$$(x-3)(3x-12) = 0$$

Un produit est nul si, et seulement si, au moins un de ses facteurs est nul:

$$x - 3 = 0$$

$$x = 3$$

$$3x - 12 = 0$$

$$3x = 12$$

$$x = \frac{12}{3}$$

x = 4 Cette équation a pour ensemble des solutions:

$$\mathcal{S} = \{3; 4\}$$

2.
$$(6-2x)(3x+2) = (3x-9)(x+2)$$

$$(6-2x)(3x+2) - (3x-9)(x+2) = 0$$

$$[-2(x-3)](3x+2) - [3(x-3)](x+2) = 0$$

$$-2(x-3)(3x+2) - 3(x-3)(x+2) = 0$$

$$(x-3)[-2(3x+2) - 3(x+2)] = 0$$

$$(x-3)(-6x-4-3x-6) = 0$$

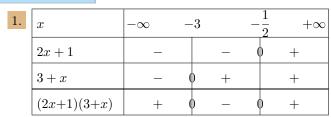
$$(x-3)(-9x-10) = 0$$

(x-3)(-9x-10)=0 Un produit est nul si, et seulement si, au moins un de ses facteurs est nul:

$$\begin{array}{c|c} x-3=0 \\ x=3 \end{array} \hspace{0.2cm} \begin{array}{c|c} -9x-10=0 \\ -9x=10 \end{array}$$
 Cette équation a pour ensemble des solutions :

$$\mathcal{S} = \left\{ -\frac{10}{9} \, ; \, 3 \right\}$$

Correction 13



2.	x	$-\infty$	$\frac{3}{4}$		2	$+\infty$
	2-x	+		+	0	_
	4x-3	_	0	+		+
	(2-x)(4x-3)	_	0	+	ø	_

3.	x	$-\infty$	-2		2	$+\infty$
	2+x	ı	ø	+		+
	2-x	+		+	ø	_
	$\frac{2+x}{2-x}$	ı	ø	+		_

4.	x	$-\infty$ -	$\frac{1}{4}$ ()	$1 + \infty$
	4x + 1	_	+	+	+
	x-1	_	_	_	0 +
	x	_	- () +	+
	$\frac{(4x+1)(x-1)}{x}$	- () +	_	0 +

Correction 14

1. On a le tableau de signe suivant:

x	$-\infty$	-4		$\frac{1}{2}$	$+\infty$
x+4	_	ø	+		+
1-2x	+		+	0	_
(x+4)(1-2x)	_	0	+	0	_

On en déduit que l'inéquation $(x+4)(1-2x) \ge 0$ admet pour ensemble de solutions:

$$S = \left[-4; \frac{1}{2} \right]$$

2. On a la factorisation suivante:

$$\frac{x^2 - 1}{x + 2} = \frac{(x+1)(x-1)}{x+2}$$

On a le tableau de signe suivant :

x	$-\infty$	-2		-1		1	$+\infty$
x+1	_		_	•	+		+
x-1	_		_		_	•	+
x+2	_	0	+		+		+
$\frac{x^2-1}{x+2}$	_		+	ø	_	0	+

Ainsi, l'équation $\frac{x^2-1}{x+2} < 0$ admet pour solution d'après le tableau de signe l'ensemble suivant :

$$S =]-\infty; -2[\cup]-1;1[$$

Correction 15

a. On a les transformations algébriques suivantes:

$$(x+1)(1-x) > (2x-1)(x+1)$$
$$(x+1)(1-x) - (2x-1)(x+1) > 0$$
$$(x+1)[(1-x) - (2x-1)] > 0$$
$$(x+1)(1-x-2x+1) > 0$$
$$(x+1)(2-3x) > 0$$

Etudions le signe de l'expression du membre de gauche:

x	$-\infty$	-1		$\frac{2}{3}$	$+\infty$
x+1	_	0	+		+
2-3x	+		+	0	_
(x+1)(2-3x)	_	0	+	0	_

Ainsi, l'inéquation a pour ensemble de solutions :

$$\mathcal{S} = \left] -1; \frac{2}{3} \right[$$

b. On a les transformations algébriques suivantes:

$$x^{3} - x \leqslant 0$$
$$x \cdot (x^{2} - 1) \leqslant 0$$
$$x \cdot (x + 1)(x - 1) \leqslant 0$$

Etudions le signe de l'expression du membre de gauche:

x	$-\infty$ -	-1	0		1 +	∞
x	_	_	0	+	+	
x-1	_	_		_	0 +	
x+1	_	0 +		+	+	
x(x+1)(x-1)	_	6 +	0	_	0 +	

Cette équation admet pour ensemble de solutions : $\mathcal{S} =]-\infty;-1] \cup [0;1]$

$$(x+1)^{2} - (x+1)(2-x) \ge 0$$
$$(x+1)[(x+1) - (2-x)] \ge 0$$
$$(x+1)(x+1-2+x) \ge 0$$
$$(x+1)(2x-1) \ge 0$$

Etudions le signe de l'expression du membre de gauche:

x	$-\infty$	-1		$\frac{1}{2}$	$+\infty$
x+1	-	ø	+		+
2x-1	l		_	0	+
(x+1)(2x-1)	+	ø	_	0	+

Cette inéquation admet pour ensemble de solutions : $\mathcal{S} = \left] -\infty \; ; -1 \left[\cup \right] \frac{1}{2} \; ; +\infty \right[$

$$S =]-\infty; -1[\cup]\frac{1}{2}; +\infty$$

d. On a les transformations algébriques suivantes:

$$\frac{x+1}{x-1} < -\frac{1}{x}$$

$$\frac{x+1}{x-1} + 1 < 0$$

$$\frac{x+1}{x-1} + \frac{x-1}{x-1} < 0$$

$$\frac{(x+1) + (x-1)}{x-1} < 0$$

$$\frac{2x}{x-1} < 0$$

Etudions le signe de l'expression du membre de gauche:

x	$-\infty$	0		1	$+\infty$
2x	_	ø	+		+
x-1	_		_	ø	+
$\frac{2x}{x-1}$	+	ø	_		+

Cette inéquation admet pour ensemble de solutions: S =]0;1[