EXERCICE 1

$$U_0 = \frac{1}{2}$$
 et, pour tout entier naturel n , $U_{n+1} = \frac{2U_n}{1 + U_n}$
Démontrer par récurrence que : $\forall n \in \mathbb{N}$, $U_n = \frac{2^n}{1 + 2^n}$

Soit $\mathscr{P}(n)$ la propriété $U_n = \frac{2^n}{1+2^n}$.

• Initialisation

$$\frac{2^0}{1+2^0} = \frac{1}{2} = u_0$$
, donc la propriété est vraie pour $n = 0$.

• Hérédité

On suppose la propriété vraie pour un entier n donné.

c'est-à-dire que :
$$U_n = \frac{2^n}{1+2^n}$$
.

D'où:
$$U_{n+1} = \frac{2U_n}{1+U_n} = \frac{2 \times \frac{2^n}{1+2^n}}{1+\frac{2^n}{1+2^n}}$$

$$= \frac{\frac{2^{n+1}}{1+2^n}}{\frac{1+2^n}{1+2^n}}$$

$$= \frac{2^{n+1}}{1+2^n+2^n}$$

$$= \frac{2^{n+1}}{1+2^n+2^n}$$

$$= \frac{2^{n+1}}{1+2^{n+1}} \quad \operatorname{car} 2^n + 2^n = 2 \times 2^n = 2^{n+1}$$

On a donc montré que si $\mathcal{P}(n)$ est vraie, alors $\mathcal{P}(n+1)$ l'est aussi.

Conclusion

La propriété est vraie au rang 0, et elle est héréditaire, donc, d'après le principe de récurrence, on en déduit que pour tout n, on a : $U_n = \frac{2^n}{1+2^n}$.

EXERCICE 2

Soit une suite (v_n) telle que, pour tout entier naturel n, $v_{n+1} = -\frac{1}{2}v_n^2 + 3$

On considère la proposition P(n): $v_n \le -4$ Montrer que P(n) est héréditaire.

On suppose la propriété vraie pour un entier n donné.

c'est-à-dire que : $v_n \leq -4$.

D'où: $v_n^2 \ge 16$ car la fonction $x \mapsto x^2$ est décroissante sur $]-\infty;0]$

$$-\frac{1}{2}v_n^2 \leqslant -8$$
 (on multiplie par un négatif)

$$-\frac{1}{2}v_n^2 + 3 \leqslant -5$$

$$v_{n+1} \leqslant -5$$

D'où $v_{n+1} \leqslant -4$ car $-5 \leqslant -4$

On a donc montré que si $\mathcal{P}(n)$ est vraie, alors $\mathcal{P}(n+1)$ l'est aussi, donc que P(n) est héréditaire.