Corrigé DS n° 2

EXERCICE 1

$$\forall x \in \mathbb{R}, \ f'(x) = 2025(-2)(1-2x)^{2024} = -4050(1-2x)^{2024}$$

$$\forall x \in \mathbb{R}, \ g(x) = 5(x^4 + 2)^{-5}$$
 d'où $g'(x) = 5(-5)(4x^3)(x^4 + 2)^{-6} = \frac{-100x^3}{(x^4 + 2)^6}$

EXERCICE 2

PARTIE I

- 1. **Faux** car f(x) > 0 sur [2;6], donc si g' = f, g est strict. croissante sur [2;6].
- 2. **Vrai** car f, donc g', est décroissante sur [2;6], donc g est concave sur [2;6].
- 3. **Faux** car f est strict. décroissante sur [2;6].
- 4. **Vrai** car si g' = f, alors g'' = f', et f'(x) (donc g''(x)) s'annule en changeant de signe en $\frac{1}{e}$. Donc la courbe de g admet un point d'inflexion..

PARTIE II

- 1. La droite \mathcal{T}_A est tangente à la courbe \mathscr{C}_f au point A de coordonnées $\left(\frac{1}{e}; e\right)$; elle a donc comme coefficient directeur $f'\left(\frac{1}{e}\right)$.
 - La droite \mathcal{T}_A est parallèle à l'axe des abscisses donc son coefficient directeur est nul.
 - On peut donc déduire que $f'\left(\frac{1}{e}\right) = 0$.
 - La droite \mathcal{T}_B est tangente à la courbe \mathscr{C}_f au point B de coordonnées (1; 2), donc elle a pour coefficient directeur f'(1).
 - La droite \mathcal{T}_B coupe l'axe des abscisses au point de coordonnées (3; 0) et l'axe des ordonnées au point de coordonnées (0; 3), donc on peut en déduire que son coefficient directeur est $\frac{3-0}{0-3} = -1$.
 - On a donc f'(1) = -1.
- 2. La droite \mathcal{T}_B a pour coefficient directeur -1 et 3 pour ordonnée à l'origine, donc elle a pour équation : y = -x + 3.

EXERCICE 3

1. f est dérivable sur \mathbb{R} en tant que produit de fonctions dérivables sur \mathbb{R} . $\forall x \in \mathbb{R}, \ f'(x) = (1) \left(e^{-x^2} \right) + (x) \left(-2xe^{-x^2} \right) = (1-2x^2) \left(e^{-x^2} \right)$

f' est dérivable sur $\mathbb R$ en tant que produit de fonctions dérivables sur $\mathbb R$.

$$\forall x \in \mathbb{R}, \ f''(x) = (-4x)\left(e^{-x^2}\right) + \left(1 - 2x^2\right)\left(-2xe^{-x^2}\right)$$
$$= (-6x + 4x^3)\left(e^{-x^2}\right)$$
$$= 2x(2x^2 - 3)\left(e^{-x^2}\right)$$

2. On dresse le tableau de signe de f''(x):

х	$-\infty$		$-\sqrt{\frac{3}{2}}$		0		$\sqrt{\frac{3}{2}}$		+∞
2 <i>x</i>	_			-	0	+		+	
$2x^2 - 3$		+	0	_		_	0	+	
e^{-x^2}		+		+		+		+	
f''(x)		_	0	+	0	_	0	+	

- f est convexe sur $\left[-\sqrt{\frac{3}{2}};0\right]$ et sur $\left[\sqrt{\frac{3}{2}};+\infty\right[$
- f est concave sur $\left] -\infty; -\sqrt{\frac{3}{2}} \right]$ et sur $\left[0; \sqrt{\frac{3}{2}} \right]$

Sa courbe admet trois points d'inflexion d'abscisses $-\sqrt{\frac{3}{2}}$, 0, et $\sqrt{\frac{3}{2}}$.

EXERCICE 4

\$\mathcal{C}_1\$ ne peut pas être la courbe de \$f\$, car \$f'\$ serait alors négative, puis positive et enfin négative, et aucune des deux autres courbes ne correspond à ces signes.
\$\mathcal{C}_1\$ ne peut pas être la courbe de \$f'\$, car sa dérivée \$f''\$ serait de même négative, puis positive et enfin négative, et aucune des deux autres courbes ne correspond à ces signes.

Donc \mathscr{C}_1 est la courbe de f''.

• \mathscr{C}_2 ne peut pas être la courbe de f, car sa dérivée serait négative puis positive, et cela ne correspond pas à la fonction représentée par la courbe \mathscr{C}_3 . Donc \mathscr{C}_3 est la courbe de f.

Et enfin \mathscr{C}_2 est la courbe de f'.

EXERCICE 5

1. (a) f est dérivable sur \mathbb{R} en tant que composée de la forme \sqrt{u} avec u dérivable et strictement positive sur \mathbb{R} .

$$\forall x \in \mathbb{R}, \ f'(x) = \frac{2x}{2\sqrt{x^2 + 8}} = \frac{x}{\sqrt{x^2 + 8}}$$

$$f'(1) = \frac{1}{3} \quad \text{et} \quad f(1) = 3.$$

Equation réduite de T_1 : $y = \frac{1}{3}(x-1) + 3 = \frac{1}{3}x + \frac{8}{3} = \frac{x+8}{3}$

(b) f' est dérivable sur \mathbb{R} en tant que quotient, défini sur \mathbb{R} , de fonctions dérivables sur \mathbb{R} .

vables sur
$$\mathbb{R}$$
.

$$\forall x \in \mathbb{R}, \ f''(x) = \frac{(1)(\sqrt{x^2 + 8}) - \frac{x}{\sqrt{x^2 + 8}}(x)}{\sqrt{x^2 + 8}^2}$$

$$= \frac{(\sqrt{x^2 + 8})^2 - x^2}{\sqrt{x^2 + 8}}$$

$$= \frac{x^2 + 8}{x^2 + 8}$$

$$= \frac{x^2 + 8}{x^2 + 8}$$

$$= \frac{8}{(x^2 + 8)\sqrt{x^2 + 8}}$$

(c) f est convexe sur \mathbb{R} car f''(x) > 0 sur \mathbb{R} .

Donc sa courbe est au-dessus de toute ses tangentes, donc de T_1 .

On a donc, pour tout réel
$$x$$
: $\sqrt{x^2+8} \geqslant \frac{x+8}{3}$.

2. Soit *a* un réel. Equation réduite de T_a : y = f'(a)(x-a) + f(a)

Solit
$$a$$
 the rect. Equation reduite de T_a : $y = f(a)(x-a) + f(a)$

$$O \in T_a \iff 0 = f'(a)(0-a) + f(a) \iff 0 = -af'(a) + f(a)$$

$$\iff -a\frac{a}{\sqrt{a^2 + 8}} + \sqrt{a^2 + 8} = 0$$

$$\iff \frac{-a^2 + \sqrt{a^2 + 8}}{\sqrt{a^2 + 8}} = 0$$

$$\iff \frac{8}{\sqrt{a^2 + 8}} = 0$$

Cette équation n'a pas de solution (car $8 \neq 0$), donc il n'existe aucune tangente à \mathscr{C}_f passant par l'origine du repère.