EXERCICE 1 3 pts

Déterminer l'expression de la dérivée de chacune des fonctions suivantes, définies et dérivables $\operatorname{sur} \mathbb{R}$.

$$f(x) = (1 - 2x)^{2025}$$

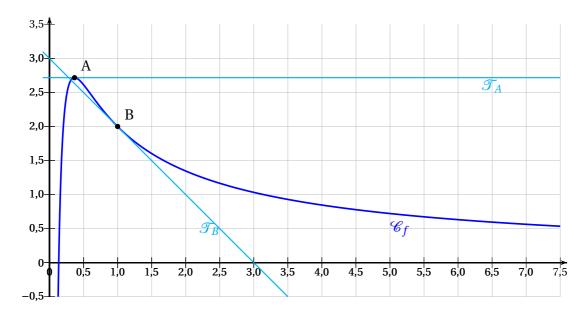
$$g(x) = \frac{5}{(x^4 + 2)^5}$$

EXERCICE 2 5 pts

Sur le graphique ci-dessous, on a représenté dans un repère orthonormé :

- la courbe représentative \mathscr{C}_f d'une fonction f définie et dérivable sur]0; $+\infty[$;
- la tangente \mathcal{T}_A à la courbe \mathscr{C}_f au point A de coordonnées $\left(\frac{1}{2}; e\right)$;
- la tangente \mathcal{T}_B à la courbe \mathscr{C}_f au point B de coordonnées (1; 2).

La droite \mathcal{T}_A est parallèle à l'axe des abscisses. La droite \mathcal{T}_B coupe l'axe des abscisses au point de coordonnées (3; 0) et l'axe des ordonnées au point de coordonnées (0; 3).



PARTIE I

Pour chacune des affirmations suivantes, indiquer, par lecture graphique, si elle est vraie ou fausse, en justifiant votre réponse.

- **1.** Si *f* est la dérivée d'une fonction *g*, *g* est décroissante sur [2;6].
- **2.** Si *f* est la dérivée d'une fonction *g*, *g* est concave sur [2;6].
- **3.** $f'(x) \ge 0$ sur [2;6].
- **4.** Si f est la dérivée d'une fonction g, alors la courbe de g admet un point d'inflexion.

PARTIE II

- 1. Déterminer les valeurs de $f'\left(\frac{1}{e}\right)$ et de f'(1).
- **2.** Donner une équation de la droite \mathcal{T}_B .

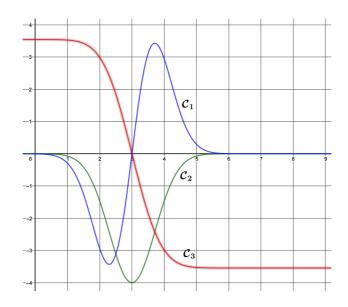
Soit la fonction f définie et deux fois dérivables sur R par : $f(x) = xe^{-x^2}$.

- 1. Vérifier que, pour tout réel x, on a : $f''(x) = 2x(2x^2 3)e^{-x^2}$.
- **2.** Etudier la convexité de f et préciser les abscisses des éventuels points d'inflexion de sa courbe.

EXERCICE 4 3 points

Ci-dessous sont représentées les courbes :

- d'une fonction f définie et deux fois dérivable sur [0;9]
- de sa dérivée f'
- de sa dérivée seconde $f^{''}$



Déterminer, en justifiant votre choix, quelle courbe correspond à quelle fonction.

EXERCICE 5 5 pts

Soit la fonction f définie sur R par $f(x) = \sqrt{x^2 + 8}$.

On note \mathscr{C}_f sa courbe représentative dans un repère du plan.

Pour tout réel a, on note T_a la tangente à la courbe \mathscr{C}_f au point d'abscisse a.

- 1. a. Déterminer une équation de la tangente T_1 à la courbe \mathcal{C}_f au point d'abscisse 1.
 - **b.** Vérifier que, pour tout réel x, on a : $f''(x) = \frac{8}{(x^2+8)\sqrt{x^2+8}}$.
 - **c.** Montrer que, pour tout réel x, on a : $\sqrt{x^2 + 8} \geqslant \frac{x + 8}{3}$.
- **2.** Existe-t-il une tangente à la courbe \mathscr{C}_f passant par l'origine du repère?