Corrigé DM n° 1

EXERCICE 1

- 1. On cherche a et b tel que f(-2) = -3 et f'(-2) = 0
 - $f(-2) = \frac{4-2a+b}{1} = -4+2a-b$
 - f est dérivable sur D en tant que fonction rationnelle définie sur D et

$$\forall x \in D, \qquad f'(x) = \frac{(2x+a)(x+1) - (1)(x^2 + ax + b)}{(x+1)^2} = \dots$$
$$= \frac{x^2 + 2x + a - b}{(x+1)^2}$$

d'où
$$f'(-2) = a - b$$

$$\bullet \left\{ \begin{array}{cccc} f(-2) & = & -3 \\ f'(-2) & = & 0 \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{cccc} -4 + 2a - b & = & -3 \\ a - b & = & 0 \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{cccc} 2a - b & = & 1 \\ a & = & b \end{array} \right.$$

$$\iff \left\{ \begin{array}{cccc} 2a - a & = & 1 \\ a & = & b \end{array} \right. \iff \left\{ \begin{array}{cccc} a & = & 1 \\ b & = & 1 \end{array} \right.$$

• bilan:
$$\forall x \in D$$
,
$$f(x) = \frac{x^2 + x + 1}{x + 1}$$

2.
$$\forall x \in D$$
, $x + \frac{1}{x+1} = \frac{(x)(x+1)+1}{x+1} = \frac{x^2+x+1}{x+1} = f(x)$

3.
$$\forall x \in D$$
,
$$f'(x) = \frac{x^2 + 2x}{(x+1)^2}$$

 \rightarrow Voir expression de f'(x) obtenue au 1. en remplaçant a et b par leur valeur)

Tableau de variations de f:

х	$-\infty$		-2		_	1		0		$+\infty$
$x^2 + 2x$		+	0	_			_	0	+	
$(x+1)^2$		+		+	0)	+		+	
f'(x)		+	0	_			_	0	+	
f(x)	/		/ -3 \		*	\		1		*

EXERCICE 2

1.
$$\forall x \in \mathbb{R}$$
, $f(x) - (x+1) = \frac{1}{4}x^2 + 2 - x - 1 = \frac{1}{4}x^2 - x + 1$

Etudions le signe de ce trinôme : $\Delta = 1 - 4 \times \frac{1}{4} \times 1 = 0$ Il admet une racine double et le coef. de x^2 est positif d'où $f(x) - (x+1) \ge 0$ sur \mathbb{R} donc $f(x) \ge x+1$ sur \mathbb{R}

- 2. **a.** Voir courbe et constructions sur autre page
 - **b.** $\forall x \in \mathbb{R}$, $f(x) \ge x + 1$ donc $\forall n \in \mathbb{N}$, $f(u_n) \ge u_n + 1$

d'où
$$\forall n \in \mathbb{N}$$
, $u_{n+1} \geqslant u_n + 1$

- **c.** $\forall n \in \mathbb{N}$, $u_{n+1} u_n \ge 1 > 0$ donc la suite u est croissante.
- **d.** Soit P(n) la proposition : $u_n \ge u_0 + n$
 - P(0) est vraie car: $u_0 \geqslant u_0 + 0$
 - Supposons que $u_n \geqslant u_0 + n$ pour **un** entier *n* donné.

 $u_{n+1} \geqslant u_n + 1$ (d'après **2. b.** On a:

donc: $u_{n+1} \ge (u_0 + n) + 1$ d'après l'hypothèse de réc.

donc: $u_{n+1} \ge u_0 + n + 1$

Ainsi on a montré que : P(n) vraie $\rightarrow P(n+1)$ vraie

- Bilan : on en déduit, d'après le principe de récurrence que : $\forall n \in \mathbb{N}, \quad u_n \geqslant u_0 + n$
- **e.** $\forall n \in \mathbb{N}$. $u_n \geqslant u_0 + n$

Or $\lim(u_0+n)=+\infty$ donc par comparaison $\lim u_n = +\infty$.

EXERCICE 3

1.
$$u_n = 5 - n$$
 majorée par 5, mais non minorée car $\lim u_n = -\infty$.

3. $u_n = (-2)^n$
4. $u_n = -3 \times (\frac{1}{2})^n$

3.
$$u_n = (-2)^n$$

2.
$$u_n = (-2)^n$$

4.
$$u_n = -3 \times (\frac{1}{2})$$