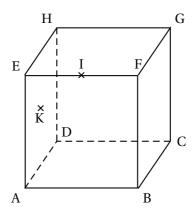
Barème sur 25 points

EXERCICE 1 5 pts

ABCDEFGH est un cube d'arête 1. I est le milieu de [EF] et K est le centre de la face ADHE.



Répondre aux questions suivantes sans utiliser de repère!

- 1. a. Justifier que le triangle AIG est isocèle.
 - **b.** Montrer que $\overrightarrow{IG} \cdot \overrightarrow{IA} = -\frac{1}{4}$
 - c. En déduire une valeur arrondie à 0, 1 degré de l'angle \widehat{AIG}
- **2. a.** En écrivant $\overrightarrow{BK} = \overrightarrow{BA} + \overrightarrow{AK}$ et $\overrightarrow{AG} = \overrightarrow{AB} + \overrightarrow{BG}$, calculer $\overrightarrow{BK} \cdot \overrightarrow{AG}$
 - **b.** Calculer de même $\overrightarrow{BK} \cdot \overrightarrow{AI}$
 - c. Quelle droite est la hauteur issue de B dans le tétraèdre BAGI? Justifier votre réponse.

EXERCICE 2 3 pts

ABCDEFGH est un cube. M et N sont les points définis par $\overrightarrow{AM} = \frac{1}{3}\overrightarrow{AC}$ et $\overrightarrow{GN} = \frac{1}{3}\overrightarrow{GE} - \frac{2}{3}\overrightarrow{BG}$

On munit l'espace du repère orthonormé $(A; \overrightarrow{AB}; \overrightarrow{AD}; \overrightarrow{AE})$

- 1. Donner sans justifier les coordonnées du point M.
- 2. Déterminer les coordonnées du point N.
- 3. Vérifier que $\overrightarrow{BN} = \frac{1}{3}\overrightarrow{BE}$.
- 4. Montrer que la droite (MN) est la perpendiculaire commune aux droites (EB) et (AC).

EXERCICE 3 2 pts

Soit A, B, C et D quatre points quelconques de l'espace.

Démontrer que : $AB^2 - BC^2 + CD^2 - DA^2 = 2 \overrightarrow{AC} \cdot \overrightarrow{DB}$

EXERCICE 4 10,5 pts

Partie A

On considère la fonction g définie sur l'intervalle]0; $+\infty[$ par $g(x) = 2\ln x + x - 2.$

- 1. Déterminer les limites de la fonction g aux bornes de son ensemble de définition.
- **2.** Étudier les variations de la fonction g sur l'intervalle $[0; +\infty[$.
- **3.** a. Démontrer qu'il existe un unique réel strictement positif α tel que $g(\alpha) = 0$.
 - **b.** Déterminer un encadrement de α d'amplitude 10^{-2} .
- **4.** En déduire le tableau de signe de la fonction g sur l'intervalle]0; $+\infty[$.

Partie B

On considère la fonction f définie sur l'intervalle]0; $+\infty[$ par $f(x) = \frac{(x-2)}{x}\ln(x)$. On note \mathscr{C}_f sa courbe représentative dans un repère orthonormé.

- **1. a.** Déterminer la limite de la fonction f en 0.
 - b. Interpréter graphiquement le résultat.
- **2.** Déterminer la limite de la fonction f en $+\infty$.
- 3. On admet que la fonction f est dérivable sur l'intervalle]0; $+\infty[$.

 Montrer que pour tout réel x strictement positif, on a $f'(x) = \frac{g(x)}{x^2}$.
- **4.** En déduire les variations de la fonction f sur l'intervalle]0; $+\infty[$,

Partie C

Étudier la position relative de la courbe \mathscr{C}_f et de la courbe représentative de la fonction ln sur]0; $+\infty$ [.

EXERCICE 5 4,5 points

Les trois questions suivantes sont indépendantes.

Indiquer dans chacune d'elle si la proposition donnée est vraie ou fausse en justifiant votre réponse.

1. Soit *n* un entier strictement positif.

Soit la fonction f_n définie sur l'ensemble des nombres réels par $f_n(x) = 2ne^x - e^{2x}$. Soit \mathscr{C}_n sa représentation graphique dans un repère orthonormé.

Proposition : « \mathcal{C}_n admet une tangente horizontale en un unique point S_n dont les coordonnées sont $(\ln n; n^2)$ ».

2. Soit f la fonction définie sur $]0; +\infty[$ par : $f(x) = x^2 \ln x$. On note $\mathscr C$ la courbe représentative de f dans un repère du plan.

Proposition : « il n'existe pas de tangente à $\mathscr C$ passant par l'origine du repère ».

3. Soit la fonction f définie sur $[0; +\infty[$ par : $\begin{cases} f(x) = \frac{\ln x}{x - \ln x} & \text{si } x > 0 \\ f(0) = -1 \end{cases}$

Proposition : « f est continue en zéro ».