Barème sur 20 points

EXERCICE 1 10,5 pts

Le plan complexe est rapporté à un repère orthonormal $(O, \overrightarrow{u}, \overrightarrow{v})$ On note A le point d'affixe i.

A tout point M du plan, distinct de A et d'affixe z, on associe le point M' d'affixe z' telle que : $z' = \frac{iz}{z-i}$ Le point M' est appelé l'image de M.

- **1. a.** Calculer l'affixe $z_{B'}$ du point B' image du point B d'affixe $z_B = 1$, et la donner sous forme algébrique.
 - **b.** Déterminer l'affixe du point C tel que l'image de C ait pour affixe 2, et la donner sous forme algébrique.
 - **c.** Exprimer $\overline{z'}$ en fonction de \overline{z} , puis en déduire que si z est un imaginaire pur distinct de i, alors z' l'est aussi.
 - **d.** Déterminer les points M du plan tels que l'on ait M = M'
- **2.** Etant donné un nombre complexe z distinct de i, on pose z = x + iy avec $(x; y) \in \mathbb{R}^2$.
 - **a.** Montrer que : $Im(z') = \frac{x^2 + y^2 y}{x^2 + (y 1)^2}$
 - **b.** Déterminer l'ensemble \mathscr{E} des points M d'affixe z telle que z' soit réel.

EXERCICE 2 3,5 pts

Le plan complexe est rapporté à un repère orthonormal $(0, \overrightarrow{u}, \overrightarrow{v})$

Soit A, B et C trois points du plan d'affixes respectives z_A , z_B et z_C . On note A' le milieu de [BC], et B' le milieu de [AC].

Soit G le point d'affixe z_G défini par $\overrightarrow{AG} + 2\overrightarrow{A'G} = \overrightarrow{0}$.

- 1. Montrer que $z_G = \frac{1}{3}(z_A + z_B + z_C)$.
- 2. Montrer que les points B, G et B' sont alignés.

EXERCICE 3 Vrai ou faux 6 pts

Pour chacune des propositions suivantes, déterminer en justifiant si elle est vraie ou fausse.

- **1.** Proposition 1: L'équation $z^3 + z^2 + 1 i = 0$ admet une solution réelle.
- **2.** Proposition 2: $\forall k \in \mathbb{N}, (1-i)^{4k+2} \in i\mathbb{R}$
- **3.** Le plan complexe est rapporté à un repère orthonormal $(0, \overrightarrow{u}, \overrightarrow{v})$ Proposition 3: Pour tout $z \in \mathbb{C}^*$ les points M d'affixe z et M' d'affixe $\frac{-1}{\overline{z}}$ sont alignés avec le point O.