Corrigé DS nº 6

1. On a:
$$f(x) = 2025 \iff \ln(1+x^2) = 2025$$

 $\iff e^{\ln(1+x^2)} = e^{2025}$
 $\iff 1+x^2 = e^{2025} \iff$

 $x^2 = e^{2025} - 1$: ce nombre étant positif, l'équation a deux solutions : $\sqrt{e^{2025} - 1}$ et $-\sqrt{e^{2025} - 1}$

2. La fonction est définie si $-x^2 - x + 6 > 0 \iff x^2 + x - 6 < 0$.

Le trinôme $x^2 + x - 6$ a une racine évidente : 2. Le produit des racines étant égal à -6, l'autre racine est donc -3.

Donc $x^2 + x - 6 = (x - 2)(x + 3)$. On sait que ce trinôme est positif sauf (ce que l'on cherche) entre les racines -3 et 2.

La fonction est donc définie sur l'intervalle]-3; 2[.

- 3. Une équation de la tangente au point d'abscisse 1 est : y = f'(1)(x-1) + f(1).
 - $f(1) = 1 4 + 3\ln(2 1) = -3 + 3 \times 0 = -3$;
 - $f'(x) = 2x 4 + 3 \times \frac{2}{2x 1} = 2x 4 + \frac{6}{2x 1}$, d'où $f'(1) = -2 + \frac{6}{1} = 4$.

Une équation de la tangente est donc $y = 4(x-1) - 3 \iff y = 4x - 7$.

4. D'après l'énoncé il faut que x > -3 et que x > -1. Il faut donc résoudre l'inéquation dans l'intervalle]-1; $+\infty$ [.

$$\ln(x+3) < 2\ln(x+1) \iff \ln(x+3) < \ln(x+1)^2 \iff x+3 < (x+1)^2 \iff 0 < x^2 + 2x + 1 - x - 3 \iff 0 < x^2 + x - 2.$$

Le trinôme $x^2 + x - 2$ a une racine évidente 1; comme le produit des racines est égal à -2, l'autre racine est -2. On a donc :

 $x^2 + x - 2 > 0 \iff (x - 1)(x + 2) > 0$: le trinôme est positif (ce que l'on cherche) sauf entre les racines. D'après la remarque préliminaire $S = \{|1; +\infty|\}$.

1. (a) Soit $f(x) = \frac{6x}{\sqrt{x^2 + 3}}$ On sait que $\frac{u'}{\sqrt{u}}$ a pour primitive $2\sqrt{u}$ $f(x) = \frac{6x}{\sqrt{x^2 + 3}} = 3 \times \frac{2x}{\sqrt{x^2 + 3}}$

Donc les solutions sur *I* de l'équa. diff. sont les fonctions de la forme : $x \mapsto 6\sqrt{x^2 + 3} + C$ $(C \in \mathbb{R})$

(b) Soit $g(x) = x(-4x^2 + 5)^4$ On sait que $u'u^4$ a pour primitive $\frac{1}{5}u^5$ $g(x) = x(-4x^2 + 5)^4 = -\frac{1}{8} \times (-8x)(-4x^2 + 5)^4$

Donc les solutions sur *I* de l'équa. diff. sont les fonctions de la forme :

$$x \longmapsto -\frac{1}{8} \times \frac{1}{5} (-4x^2 + 5)^5 + C = -\frac{1}{40} (-4x^2 + 5)^5 + C \quad (C \in \mathbb{R})$$

2. Soit γ définie sur $I =]2; +\infty[$ par $\gamma(x) = \frac{x+13}{(x+3)(2-x)}$.

(a)
$$\forall x \in I$$
, $\frac{a}{x+3} + \frac{b}{2-x} = \frac{a(2-x)}{(x+3)(2-x)} + \frac{b(x+3)}{(2-x)(x+3)} = \frac{(b-a)x+2a+3b}{(2-x)(x+3)}$.

D'où par identification avec $\gamma(x) = \frac{x+13}{(x+3)(2-x)}$:

$$\begin{cases} b-a &= 1\\ 2a+3b &= 13 \end{cases} \Leftrightarrow \begin{cases} b &= 1+a\\ 2a+3(1+a) &= 13 \end{cases} \Leftrightarrow \begin{cases} b &= 1+a\\ 5a &= 10 \end{cases} \Leftrightarrow \begin{cases} a &= 2\\ b &= 3 \end{cases}$$

Donc, pour tout x de I: $\gamma(x) = \frac{2}{x+3} + \frac{3}{2-x} = 2 \times \frac{1}{x+3} - 3 \times \frac{-1}{2-x}$

(b) Les primitives de γ sur $I =]2; +\infty[$ sont donc les fonctions de la forme :

$$x \longmapsto 2\ln|x+3| - 3\ln|2-x| + C = 2\ln(x+3) - 3\ln(x-2) + C \quad (C \in \mathbb{R})$$

On cherche la primitive Γ telle que : $\Gamma(3) = \ln(4)$

$$\Gamma(3) = \ln(4) \iff 2\ln(6) - 3\ln(1) + C = \ln(4)$$
 $\iff C = \ln(4) - \ln(6^2) = \ln\left(\frac{4}{36}\right) = -\ln 9 = -2\ln 3$

Donc: $\forall x \in I, \ \Gamma(x) = 2\ln(x+3) - 3\ln(x-2) - 2\ln 3$

1.
$$\forall x \in \mathbb{R}$$
 $f(x) = \ln(1 + e^{-x}) + \frac{1}{3}x = \ln(1 + \frac{1}{e^x}) + \frac{1}{3}x = \ln(\frac{e^x + 1}{e^x}) + \frac{1}{3}x$
Ainsi $f(x) = \ln(1 + e^x) - \ln(e^x) + \frac{1}{3}x = \ln(1 + e^x) - x + \frac{1}{3}x = \ln(e^x + 1) - \frac{2}{3}x$

- 2. $\lim_{x \to +\infty} (1 + e^{-x}) = 1$ d'où par composée $\lim_{x \to +\infty} (\ln(1 + e^{-x})) = 0$ De plus on a $\lim_{x \to +\infty} (\frac{1}{3}x) = +\infty$ d'où par somme $\lim_{x \to +\infty} (f(x)) = +\infty$
 - $\lim_{x \to -\infty} (e^x + 1) = 1$ d'où par composée $\lim_{x \to -\infty} (\ln(e^x + 1)) = 0$ De plus on a $\lim_{x \to -\infty} (-\frac{2}{3}x) = +\infty$ d'où par somme $\lim_{x \to -\infty} (f(x)) = +\infty$
- 3. (a) Pour tout réel x, $f(x) = \ln(e^x + 1) \frac{2}{3}x$

D'où
$$f'(x) = \frac{e^x}{e^x + 1} - \frac{2}{3} = \frac{3e^x}{3(e^x + 1)} - \frac{2(e^x + 1)}{3(e^x + 1)} = \frac{e^x - 2}{3(e^x + 1)}$$

Ainsi f'x) est du signe de $e^x - 2$ sur \mathbb{R} .

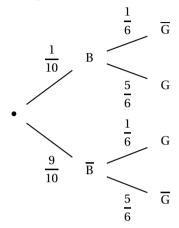
(b)

x	$-\infty$	ln 2	$+\infty$
f'(x)	-	ф	+
f(x)	+∞	$\ln 3 - \frac{2}{3} \ln 2$	+∞

EXERCICE 4 5 pts

Partie A

1. On peut dresser l'arbre d'une partie de loterie :



B , \overline{B} forment une partition de l'univers, donc, d'après le théorème des probabilités totales, on a :

$$p(G) = p(B) \times p_B(G) + p(\overline{B}) \times p_{\overline{B}}(G) = \frac{1}{10} \times \frac{5}{6} + \frac{9}{10} \times \frac{1}{6} = \frac{5+9}{60} = \frac{14}{60} = \frac{7}{30}.$$

2. On a $p(\overline{G}) = 1 - p(G) = \frac{23}{30}$.

Il faut trouver
$$p_{\overline{G}}(B) = \frac{p(\overline{G} \cap B)}{p(\overline{G})} = \frac{\frac{1}{10} \times \frac{1}{6}}{\frac{23}{30}} = \frac{\frac{1}{60}}{\frac{23}{30}} = \frac{1}{60} \times \frac{30}{23} = \frac{1}{46}.$$

Partie B

1. (a) Loi de probabilité de X:

X	+ 4	-1
$p(X=x_i)$	$\frac{7}{30}$	$\frac{23}{30}$

L'espérance mathématique est $E(X) = 4 \times \frac{7}{30} + (-1) \times \frac{23}{30} = \frac{5}{30} = \frac{1}{6}$.

(b) L'espérance de gain étant positive (environ 16 centimes par partie) le jeu est défavorable à l'organisateur.

2. On reprend l'arbre initial avec $p(B) = \frac{1}{n+1}$ et $p(\overline{B}) = \frac{n}{n+1}$.

La probabilité de gagner devient $p(G) = \frac{1}{n+1} \times \frac{5}{6} + \frac{n}{n+1} \times \frac{1}{6} = \frac{n+5}{6(n+1)}$. D'où: $p(\overline{G}) = \frac{5n+1}{6(n+1)}$.

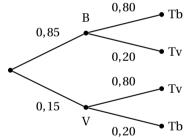
L'espérance est donc $E(X) = 4 \times \frac{n+5}{6(n+1)} + (-1) \times \frac{5n+1}{6(n+1)} = \frac{19-n}{6(n+1)}$.

Jeu défavorable à l'organisateur \iff $E(X) \geqslant 0 \iff \frac{19-n}{6(n+1)} \geqslant 0 \iff n \leqslant 19.$

On définit les notations suivantes :

- V l'éevènement : « le taxi est vert »
- B l'éevènement : « le taxi est bleu »
- Tv l'éevènement : « le témoin affirme que le taxi était vert ».
- Tb l'éevènement : « le témoin affirme que le taxi était bleu ».

Arbre pondéré:



Il faut trouver la probabilité conditionnelle $p_{Tv}(V)$

$$p_{\mathrm{Tv}}(\mathrm{V}) = \frac{p(\mathrm{V} \cap \mathrm{Tv})}{p(\mathrm{Tv})} = \frac{0,15 \times 0,80}{0,85 \times 0,20 + 0,15 \times 0,80} = \frac{0,12}{0,29} = \frac{12}{29} \approx 0,414 \text{ à } 0,001 \text{ près.}$$