EXERCICE 1 - QCS 4 pts

Les questions sont indépendantes, une seule des quatre réponses proposés est exacte. Une réponse incorrecte ne rapporte ni n'enlève de point. Aucune justification n'est demandé.

- 1. On considère la fonction f définie pour tout rél x par $f(x) = \ln(1 + x^2)$. Sur \mathbb{R} , l'équation f(x) = 2025
 - a. n'admet aucune solution.

- **b.** admet exactement une solution.
- c. admet exactement deux solutions.
- d. admet une infinité de solutions.
- **2.** La fonction $x \mapsto \ln(-x^2 x + 6)$ est définie sur :
 - **a.**] 3; 2[

b. $]-\infty; 6]$

c. $]0; +\infty[$

- **d.** $|2; +\infty[$
- **3.** On considère la fonction f définie sur]0,5; $+\infty[$ par $f(x) = x^2 4x + 3\ln(2x 1)$ Une équation de la tangente à la courbe représentative de f au point d'abscisse 1 est :
 - **a.** y = 4x 7

b. y = 2x - 4

c. y = -3(x-1) + 4

- **d.** v = 2x 1
- **4.** L'ensemble *S* des solutions dans \mathbb{R} de l'inéquation $\ln(x+3) < 2\ln(x+1)$ est :
 - **a.** $S =]-\infty$; $-2[\cup]1$; $+\infty[$

b. $S =]1; +\infty[$

c. $S = \emptyset$

d. S =]-1; 1[

EXERCICE 2 4 points

1. Résoudre chacune des équations différentielles suivantes sur l'ensemble I donné :

a.
$$y' = \frac{6x}{\sqrt{x^2 + 3}}$$
 sur $I = \mathbb{R}$

b.
$$y' = x(-4x^2 + 5)^4$$
 sur $I = \mathbb{R}$

- **2.** Soit γ la fonction définie sur $I =]2; +\infty[$ par $\gamma(x) = \frac{x+13}{(x+3)(2-x)}.$
 - **a.** Déterminer les réels a, et b tels que, pour tout x de I, on ait : $\gamma(x) = \frac{a}{x+3} + \frac{b}{2-x}$.
 - **b.** En déduire la primitive Γ de γ définie sur I et vérifiant $\Gamma(3) = \ln 4$.

EXERCICE 3 5 pts

Soit la fonction f définie sur \mathbb{R} par : $f(x) = \ln(1 + e^{-x}) + \frac{1}{3}x$

- 1. Montrez que pour tout réel x, $f(x) = \ln(e^x + 1) \frac{2}{3}x$
- **2.** Etudier les limites de f en $+\infty$ et $-\infty$.
- **3.** Soit f', définie sur \mathbb{R} , la fonction dérivée de f.
 - **a.** Montrez que, pour tout réel x, $f'(x) = \frac{e^x 2}{3(e^x + 1)}$
 - **b.** En déduire le tableau des variations de f sur \mathbb{R} .

EXERCICE 4 5 pts

Pour réaliser une loterie, un organisateur dispose d'une part d'un sac contenant exactement un jeton blanc et 9 jetons noirs indiscernables au toucher et d'autre part d'un dé cubique équilibré dont les faces sont numérotées de 1 à 6.

Il décide des règles suivantes pour le déroulement d'une partie.

Le joueur doit tirer un jeton puis jeter le dé :

- si le jeton est blanc, le joueur perd lorsque le jet du dé donne 6;
- si le jeton est noir, le joueur gagne lorsque le jet du dé donne 6. À la fin de la partie, le jeton est remis dans le sac.

On note B l'évènement « le jeton tiré est blanc » et G l'évènement « le joueur gagne le jeu ».

L'événement contraire d'un évènement E sera noté \overline{E} .

La probabilité d'un évènement E sera notée p(E).

Partie A

- 1. Montrer que $p(G) = \frac{7}{30}$. On pourra s'aider d'un arbre pondéré.
- 2. Quelle est la probabilité que le joueur ait tiré le jeton blanc sachant qu'il a perdu?

Partie B

L'organisateur décide de faire de sa loterie un jeu d'argent :

- chaque joueur paie 1 € par partie;
- si le joueur gagne la partie, il reçoit 5 €;
- si le joueur perd la partie, il ne reçoit rien.
- **1.** On note *X* la variable aléatoire égale au gain algébrique (positif ou négatif) du joueur à l'issue d'une partie.
 - **a.** Donner la loi de probabilité de *X*.
 - **b.** Calculer son espérance E(X). Le jeu est-il favorable à l'organisateur?
- **2.** L'organisateur décide de modifier le nombre n de jetons noirs (n entier naturel non nul) tout en gardant un seul jeton blanc.

Pour quelles valeurs de l'entier n le jeu est-il favorable à l'organisateur?

EXERCICE 5 Délit de fuite!

2 pts

Un taxi est mêlé à un accident nocturne avec délit de fuite. Dans la ville où cet accident s'est produit il y a deux compagnies de taxis, l'une utilise des véhicules bleus, l'autre des verts. On donne les renseignements suivants :

- 85% des taxis de la ville sont bleus et 15% sont verts.
- Un témoin de l'accident affirme que le taxi impliqué était vert.

Le tribunal fait analyser la capacité du témoin à distinguer, dans des conditions d'éclairement similaires, les véhicules des deux compagnies. Durant cette série d'essais le témoin identifia la couleur correcte (qu'elle soit verte ou bleue) dans 80% des cas et se trompa dans 20% des cas.

Quelle est la probabilité que le taxi impliqué dans l'accident soit réellement vert?