Corrigé DS nº 1

EXERCICE 1 1,5 pts

Soit A un réel négatif.

Montrons qu'il existe un rang N à partir duquel $u_n \leq A$.

$$u_n \leqslant A \Longleftrightarrow -5n^2 \leqslant A \Longleftrightarrow n^2 \geqslant -\frac{A}{5} \Longleftrightarrow n \geqslant \sqrt{-\frac{A}{5}}$$

Soit *N* le premier entier supérieur à $\sqrt{-\frac{A}{5}}$.

Si $n \ge N$, alors $u_n \le A$.

On a donc montré que $\lim_{n \to +\infty} -5n^2 = -\infty$

EXERCICE 2 4,5 pts

- 1. On cherche a et b tel que f(-1) = -7 et f'(-1) = 0
 - f(-1) = -a + b 4 = -7
 - f est dérivable sur D en tant que fonction rationnelle définie sur cet intervalle et

$$\forall x \in D, \quad f'(x) = a + 8 \times \frac{-1}{(x-1)^2} = a - \frac{8}{(x-1)^2}$$

d'où f'(-1) = a - 2

• bilan: $\forall x \in D$, $f(x) = 2x - 1 + \frac{8}{x - 1}$

2.
$$\forall x \in D$$
, $f(x) = 2x - 1 + \frac{8}{x - 1}$

$$= \frac{(2x - 1)(x - 1) + 8}{x - 1}$$

$$= \frac{(2x^2 - 2x - x + 1 + 8)}{x - 1}$$

$$= \frac{2x^2 - 3x + 9}{x - 1}$$

3.
$$\forall x \in D$$
, $f'(x) = \frac{(4x-3)(x-1)-(1)(2x^2-3x+9)}{(x-1)^2} = \dots = \frac{2x^2-4x-6}{(x-1)^2}$

4. 1 pt

х	$-\infty$		-1		1		3		+∞
$2x^2 - 4x - 6$		+	0	_		_	0	+	
$(x-1)^2$		+		+	0	+		+	
f'(x)		+	0	_		_	0	+	
f(x)	/		√ -7√		•		9		*

EXERCICE 3 3,5 pts

•
$$\forall n \in \mathbb{N}^*$$
, $u_n = \frac{2 - 3n^2}{n^2 + n + 1} = \frac{n^2 \left(-3 + \frac{2}{n^2}\right)}{n^2 \left(1 + \frac{1}{n} + \frac{1}{n^2}\right)} = \frac{-3 + \frac{2}{n^2}}{1 + \frac{1}{n} + \frac{1}{n^2}}$

Or $\lim_{n \to +\infty} \left(-3 + \frac{2}{n^2}\right) = -3$, et $\lim_{n \to +\infty} \left(1 + \frac{1}{n} + \frac{1}{n^2}\right) = 1$

d'où (par quotient)
$$\lim_{n \to +\infty} (u_n) = -3$$

1 pt

•
$$\forall n \in \mathbb{N}^*$$
, $v_n = \frac{\sqrt{n} - n}{1 - 3n} = \frac{n\left(\frac{1}{\sqrt{n}} - 1\right)}{n\left(\frac{1}{n} - 3\right)} = \frac{\frac{1}{\sqrt{n}} - 1}{\frac{1}{n} - 3}$

Or $\lim_{n \to +\infty} (\sqrt{n}) = +\infty$, d'où $\lim_{n \to +\infty} \left(\frac{1}{\sqrt{n}} - 1\right) = -1$, et $\lim_{n \to +\infty} \left(\frac{1}{n} - 3\right) = -3$

d'où (par quotient) $\lim_{n \to +\infty} (v_n) = \frac{1}{3}$

1,25 pts

• $\forall n \in \mathbb{N}, -1 \leqslant \cos n \leqslant 1$

 $0,75 \, \text{pt}$

d'où, pour tout entier
$$n$$
: $-n^3 - 5 \le w_n \le -n^3 + 5$
Or $\lim_{n \to +\infty} (-n^3 + 5) = -\infty$

d'où (par comparaison)
$$\lim_{n \to +\infty} (w_n) = -\infty$$
 1,25 pts

EXERCICE 4 4 pts

Proposition n° 1 : toute suite bornée admet une limite.

FAUX. Contre-exemple : $u_n = (-1)^n$.

 (u_n) est bornée car, pour tout entier n, on a $u_n \in [-1;1]$, mais cette suite n'admet pas de limite puisque les termes de rangs pairs tendent vers 1 alors que ceux de rang impairs tendent vers -1.

Proposition n° 2 : une suite décroissante est majorée.

VRAI. $\overline{\text{Si}(u_n)}$ est décroissante, alors elle est majorée par son premier terme.

Proposition n° 3: si (u_n) tend vers un réel ℓ , alors (v_n) tend vers le réel $\frac{-2}{\ell}$ FAUX. Si (u_n) converge vers zéro, alors (v_n) tend vers l'infini donc ne converge pas vers un réel. (prendre par exemple $u_n = \frac{1}{n}$, on a alors $v_n = \frac{-2}{u_n} = -2n$)

Proposition n° 4 : si (u_n) est minorée par 2, alors (v_n) est minorée par -1.

VRAI. Si,
$$\forall n \in \mathbb{N}$$
, $u_n \ge 2$, alors $\frac{1}{u_n} \le \frac{1}{2}$ d'où $\frac{-2}{u_n} \ge -1$

donc la suite (v_n) est minorée par -1.

EXERCICE 5 3,5 pts

- 1. Etude du sens de variation de la suite :
 - <u>Méthode 1</u> : étude du signe de $u_{n+1} u_n$

$$\forall n \in \mathbb{N}, \ u_{n+1} - u_n = \frac{4(n+1) - 1}{n+2} - \frac{4n - 1}{n+1}$$

$$= \frac{(4n+3)(n+1) - (n+2)(4n-1)}{(n+2)(n+1)} = \dots = \frac{5}{(n+2)(n+1)} > 0$$

Donc la suite (u_n) est croissante.

— <u>Méthode 2</u>: étude des variations sur $I = [0; +\infty[$ de la fonction f telle que $u_n = f(n)$

On a
$$f(x) = \frac{4x - 1}{x + 1}$$

$$\forall x \in I, f'(x) = \frac{4(x+1) - (1)(4x-1)}{(x+1)^2} = \frac{5}{(x+1)^2} > 0$$

f est croissante sur I, donc la suite (u_n) est croissante.

1,5 pts

2.
$$\forall n \in \mathbb{N}, \ u_n - 4 = \frac{4n - 1}{n + 1} - 4 = \frac{-5}{n + 1} < 0$$

Donc on a bien $u_n < 4$ pour tout entier n .

$$\forall n \in \mathbb{N}, \ u_n - (-1) = \frac{4n-1}{n+1} + 1 = \frac{5n}{n+1} \geqslant 0$$

Donc on a bien $u_n \geqslant -1$ pour tout entier n .

N.B. on pouvait aussi remarquer que $u_0 = -1$ et donc comme (u_n) croissante, conclure que, pour tout n, $u_n \ge u_0$, soit $u_n \ge -1$.

Bilan: pour tout entier
$$n$$
, on a: $u_n \in [-1;4[$

2 pts

EXERCICE 6 8 pts

1. Diminuer de 10% c'est multiplier par $1 - \frac{10}{100} = 1 - 0, 10 = 0, 9$.

Pour calculer l'effectif de l'année n + 1, on multiplie donc l'effectif de l'année n, u_n , par 0,9 puis on l'augmente de 100 : on a donc bien, pour tout entier n :

$$u_{n+1} = 0,9u_n + 100$$

0,5 pt

- 2. $u_0 = 2000$, d'où $u_1 = 0.9 \times 2000 + 100 = 1800 + 100 = 1900$;
 - $u_1 = 1900$, d'où $u_2 = 0.9 \times 1900 + 100 = 1710 + 100 = 1810$.
- 0,5 pt

3. Soit $\mathcal{P}(n)$ la proposition : $1000 < u_{n+1} \le u_n$. Initialisation : $1000 < 1900 \le 2000$, soit $1000 < u_1 \le u_0$.

Donc la proposition $\mathcal{P}(n)$ est vraie au rang n = 0

Hérédité : on suppose que pour un entier n donné, $1000 < u_{n+1} \le u_n$.

En multipliant chaque membre par 0,9, on obtient :

 $0,9 \times 1000 < 0,9 \times u_{n+1} \leq 0,9 \times u_n$

puis en ajoutant 100 à chaque membre on obtient :

 $900 + 100 < 0,9u_{n+1} + 100 \le 0,9u_n + 100$, soit:

 $1000 < u_{n+2} \le u_{n+1}$.

On a ainsi montré que : $\mathcal{P}(n)$ vraie $\implies \mathcal{P}(n+1)$ vraie

Bilan: on peut donc conclure, d'après le principe de récurrence pour tout entier naturel $n: 1000 < u_{n+1} \le u_n$.

- 4. La récurrence précédente montre que :
 - la suite (u_n) est décroissante $(u_{n+1} \leq u_n)$

0,25 pt

- la suite (u_n) est minorée par 1 000
- 5. On considère la suite (v_n) définie pour tout entier naturel n par $v_n = u_n 1000$.
 - (a) Pour tout entier naturel n, $v_{n+1} = u_{n+1} 1000$, soit $v_{n+1} = 0.9u_n + 100 1000$, ou encore $v_{n+1} = 0.9u_n 900 = 0.9(u_n 1000)$ et enfin :

$$v_{n+1} = 0,9v_n$$
.

Cette égalité vraie pour tout naturel n montre que la suite (ν_n) est une suite géométrique de raison 0,9.

(b) On a $v_0 = u_0 - 1000 = 2000 - 1000 = 1000$. On sait que pour tout naturel n, $v_n = v_0 \times q^n$ (avec q = 0, 9), soit : $v_n = 1000 \times 0, 9^n$. Or $v_n = u_n - 1000 \iff u_n = v_n + 1000$ $donc \ u_n = 1000 \times 0, 9^n + 1000 = 1000 (1 + 0, 9^n).$ (c) Comme -1 < 0, 9 < 1, on sait que $\lim_{n \to +\infty} 0, 9^n = 0$, donc $\lim_{n \to +\infty} 1 + 0, 9^n = 1$ et par conséquent : $\lim_{n \to +\infty} u_n = 1000$ (c) Cela signifie qu'au bout de nombreuses années la population va se rapprocher de 1000 individus.

6.

1 pt

```
1  def population(S):
2    n=0
3    u=2000
4
5   while u >=S:
6    u= 0.9*u+100
7    n = n + 1
8   return n
```