Barème sur 20 points

Exercice 1 3 pts

A tout nombre complexe z distinct de i, on associe le nombre complexe z' tel que : $z' = \frac{z+i}{z-i}$

- 1. Montrer que « $z' = \overline{z'}$ » équivaut à « $\overline{z} = -z$ ».
- 2. Reformuler la question précédente en utilisant les termes « réel » et « imaginaire pur ».

EXERCICE 2 11 pts

Le plan complexe est rapporté à un repère orthonormal $(0, \overrightarrow{u}, \overrightarrow{v})$ On note A le point d'affixe i.

A tout point M du plan, distinct de A et d'affixe z, on associe le point M' d'affixe z' telle que : $z' = \frac{iz}{z-i}$ Le point M' est appelé l'image de M.

- **1. a.** Calculer l'affixe $z_{B'}$ du point B' image du point B d'affixe $z_B = 1$, et la donner sous forme algébrique.
 - **b.** Déterminer l'affixe du point C tel que l'image de C ait pour affixe 2, et la donner sous forme algébrique.
 - **c.** Exprimer $\overline{z'}$ en fonction de \overline{z} , puis en déduire que si z est un imaginaire pur distinct de i, alors z' l'est aussi.
 - **d.** Déterminer les points M du plan tels que l'on ait M = M'
- **2.** Etant donné un nombre complexe z distinct de i, on pose z = x + iy où x et y désignent deux nombres réels.
 - **a.** Montrer l'égalité : $z' = \frac{-x}{x^2 + (y 1)^2} + i \frac{x^2 + y^2 y}{x^2 + (y 1)^2}$
 - **b.** Déterminer l'ensemble \mathscr{E} des points M d'affixe z telle que z' soit réel.

EXERCICE 3 Démonstrations de cours

2 pts

 $Pr\'erequis \rightarrow On pourra utiliser la propriété suivante : <math>\forall (z; z') \in \mathbb{C} \times \mathbb{C}, \quad \overline{zz'} = \overline{z} \times \overline{z'}$

- 1. Montrer que : $\forall z \in \mathbb{C}^*, \quad \overline{\left(\frac{1}{z}\right)} = \frac{1}{\overline{z}}$
- **2.** En déduire que : $\forall (z; z') \in \mathbb{C} \times \mathbb{C}^*, \quad \overline{\left(\frac{z}{z'}\right)} = \overline{\frac{z}{z'}}$

EXERCICE 4 Vrai ou faux 4 pts

Pour chacune des propositions suivantes, déterminer en justifiant si elle est vraie ou fausse.

- 1. L'équation $z^2 z\overline{z} = -6$ admet pour ensemble solution $\mathcal{S} = \{i\sqrt{3}\}$
- **2.** Les nombres complexes z_1 et z_2 solutions du système $\begin{cases} \frac{2z_1 z_2 = 1 + 3i}{\overline{z_1} + 2\overline{z_2} = 3 + i} & \text{sont conjugués.} \end{cases}$